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Abstract. We study the influence of diffusion on the scaling properties of the first order structure function,
S1, of a two-dimensional chaotically advected passive scalar with finite lifetime, i.e., with a decaying term in
its evolution equation. We obtain an analytical expression for S1 where the dependence on the diffusivity,
the decaying coefficient and the stirring due to the chaotic flow is explicitly stated. We show that the
presence of diffusion introduces a crossover length-scale, the diffusion scale (Ld), such that the scaling
behaviour for the structure function is analytical for length-scales shorter than Ld, and shows a scaling
exponent that depends on the decaying term and the mixing of the flow for larger scales. Therefore, the
scaling exponents for scales larger than Ld are not modified with respect to those calculated in the zero
diffusion limit. Moreover, Ld turns out to be independent of the decaying coefficient, being its value the
same as for the passive scalar with infinite lifetime. Numerical results support our theoretical findings.
Our analytical and numerical calculations rest upon the Feynmann-Kac representation of the advection-
reaction-diffusion partial differential equation.

PACS. 47.52.+j Chaos – 05.45.-a Nonlinear dynamics and nonlinear dynamical systems – 47.70.Fw Chem-
ically reactive flows – 47.53.+n Fractals

1 Introduction

The subject of advection of (chemically or biologically) re-
acting substances is of major importance in fields ranging
from combustion to water quality control (see for exam-
ple [1]). One of the simplest models of reaction occurring
in a flow is the decrease at a constant rate in the con-
centration of a substance. Radioactive or photochemical
decay belong to this class of reactions. The spatial struc-
ture of the decaying chemical under chaotic fluid stirring
has been described in recent works [2,3] with emphasis on
the microstructure formation by the stretching properties
of the flow, at scales at which molecular diffusion can be
neglected. The interpretation of real data, specially in lab-
oratory experiments in which the diffusion scale may be
explicitely resolved, requires however the consideration of
diffusive processes which tend to homogenize the structure
at the smallest scales.

In this paper we investigate the role of the molecular
diffusion in the scaling properties of the first order struc-
ture function, defined below (3) when q = 1, for a passive
scalar advected by a two-dimensional flow yielding La-
grangian chaos, and with finite lifetime. Thus, the passive
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scalar field (passive in the sense that there is no back influ-
ence on the hydrodynamics) φ(x, t) evolves according to

∂φ(r, t)
∂t

+ v(r, t) · ∇φ(r, t) = ν∇2φ(r, t) − bφ(r, t) + S(r),

(1)

where ν is the diffusivity, −bφ represents the decaying and
indicates that the passive scalar field decays with time at
rate b > 0, S(r) is a steady source of the passive scalar,
and finally, v(x, t) is the velocity of the flow. Here we
assume that the velocity field is two-dimensional, incom-
pressible, smooth, and nonturbulent. Chaotic advection
in two dimensions is obtained generically if a time depen-
dence (periodic, for e.g.) is included in v(x, t) [4].

Equation (1) can be considered as an approximation to
more complex biological or chemical phenomena, like the
dynamics of plankton populations in ocean currents [5,6]
and the advection of pollutants or chemical substances in
the atmosphere [7], or as a description of simple proc-
ceses, like the relaxation of the sea surface tempera-
ture [8]. Moreover, in [9] it is argued that, in a determined
scale range, the vorticity of a turbulent flow may evolve
passively according to equation (1), indicating the high



354 The European Physical Journal B

relevance of this equation in the studies of two-dimensional
turbulence.

In the different case of a turbulent velocity field, the
spatial properties, neglecting intermittency corrections, of
a scalar field evolving through equation (1) were first writ-
ten down by Corrsin [10]. The analytical expression for the
power spectrum was obtained, among other situations, in
the Batchelor’s regime, that is, between the smallest typi-
cal length scale of the velocity field and the characteristic
length scale of diffusion (Ld), and from this, the scaling
exponents and the diffusion length scale, Ld, were derived.
The calculated form of the power spectrum Γ (k) is

Γ (k) = Nk(2b/λ)−1 exp(−2νk2/λ), (2)

where N is a constant and λ is the absolute value of the
most negative of the average stretching rates. However,
no numerical test of this result, checking the influence of
molecular diffusion on the crossover, has been reported.
Moreover, the criticisms made by Kraichnan [11] to the
crossover of the power spectrum calculated by Batchelor
[12] for a passive scalar with infinite lifetime, b = 0, as
being too sensible to the intermittency, can also be applied
here.

In this paper we study the case of a smooth (nontur-
bulent) chaotic flow, and instead of the power spectrum
we calculate the first order structure function. In the ab-
sence of diffusion, the scaling exponents for the structure
functions were calculated neglecting intermittency correc-
tions [2], or including them for smooth chaotic flows [3,13],
and in [14] for the Kraichnan flow in the spatially smooth
limit. The structure functions are important quantities
than can yield information about the typical variation of
the concentration field over a small distance δx. Thus, a
structure function of order q is defined as

Sq(δx) = 〈|δφ|q〉 = 〈|φ(x + δxn)− φ(x)|q〉, (3)

where 〈〉 denotes spatial average, n is a unit vector in the
chosen direction, and q is a positive real number. In gen-
eral, for small δx the structure functions are expected to
exhibit a power-law dependence Sq(δx) ∼ δxζq character-
ized by the set of scaling exponents ζq. Neglecting inter-
mittency corrections implies that the scaling exponent ζq
varies linearly with q. In this work we neglect intermit-
tency, and therefore, we can limit ourselves to study only
the first order structure function, S1(δx). It is important
to note that working with the first order structure func-
tion will minimize the effect of the intermittency [15] when
comparing our analytical results with numerical (as it is
performed here) or real data. In this sense, we improve
the calculations performed by Corrsin because the inter-
mittency corrections are more important for the power
spectrum than for the first order structure function.

Summing up, in this work we study the spatial prop-
erties of a scalar field evolving with equation (1) when
the velocity field is smooth and chaotic. We calculate the
first order structure function and check the influence of
the diffusion on its scaling exponent and crossover. We
also perform numerical calculations to check our analyti-

cal results. Numerically we show that effectively the cal-
culations performed with the first order structure function
improve (2). Finally, we mention that we base all our an-
alytical and numerical calculations in the Feynman-Kac
representation of equation (1) [16,17]. In other words, we
try to obtain information about the spatial properties of
an Eulerian field φ(x, t) in the long-time limit, through
calculations following individual fluid trajectories, i.e., us-
ing a Lagrangian formulation [17]. Our numerical code is
explicitly stated in the numerical results section.

2 Analytical calculations of the first order
structure function

The solution of equation (1), with initial condition
φ(x, 0) = φ0(x) can be written in terms of the so-called
Feynmann-Kac representation [16]

φ(x, t) =
〈
φ0[r(0)]e−bt +

∫ t

0

dse−b(t−s)S[r(s)]
〉
η

(4)

where r(t) is the solution of the Langevin equation

dr
dt

= v(r, t) +
√

2νη(t) (5)

which satisfies the final condition r(t) = x. It is worth to
mention that (4) considers the backwards-in-time dynam-
ics and the problem is well-posed by fixing the final condi-
tions instead of the inital ones. η(t) is a normalized vector-
valued white noise term with zero mean, i.e. 〈η(t)〉 = 0
and 〈η(t)η(t′)〉 = Iδ(t−t′), with I the identity matrix. The
average 〈·〉η is taken over the different stochastic trajec-
tories r(t) ending at the stated final point x. Note that η
is a dummy variable in (4), which disappears after the av-
eraging. In consequence, in expressions containing several
φ’s, for example at different space points or times, a differ-
ent noise variable, each one statistically independent from
all the others, should be introduced for every appearance
of φ.

It is important to note that in the long-time limit the φ
field does not approach a steady distribution but one with
the same time-dependence of the flow. Thus, for time-
periodic flows the φ(x, t→∞) field is also time-periodic.
However, its singular characteristics do not change in time,
that is, it is a statistically steady field [2,3]. In the follow-
ing we focus in the situation in which the initial concen-
tration is φ0 = 0, so that all the structure arises from the
source. Our analytical calculations follow closely along the
steps of [2,3,6], thus we submit the reader to these refer-
ences for further details. We proceed by calculating the
difference at time t for the values of the chemical field
at two different points x + δx/2, and x− δx/2 separated
by a small distance δx. The expression for the difference
δφ(x, t; δx) ≡ φ(x + δx/2, t)− φ(x− δx/2, t) is

δφ(x, t; δx) =
〈∫ t

0

dse−b(t−s)δS[r1(s), r2(s)]
〉
η1,η2

,

(6)
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where

δS[r1(s), r2(s)] ≡ S[r1(s)]− S[r2(s)] . (7)

Here r1(s) and r2(s), with 0 < s < t, are the solutions
of equation (5) with driving noise terms η1 and η2, re-
spectively, and final values r1(t) = x + δx/2, and r2(t) =
x − δx/2. Two independent noise processes η1 and η2

have been introduced since two concentration values are
used in equation (6). We are interested in the asymptotic
(t → ∞) scaling of equation (6) for δx finite but small.
The contributions in the integral (6) split into very differ-
ent behaviors: there is a time ts such that if ts < s < t,
the backwards trajectories r1(s) and r2(s) exponentially
increase its initial distance δx, since they are advected by
a chaotic flow. In this regime, the difference δS will also
grow. At ts the trajectory separation is of the order of the
system size, or of some coherence length of the advection
velocity, L, and thus can not continue to grow. Thus, for
s < ts, δS will stop its systematic growing and S[r1(s)]
and S[r1(s)] will fluctuate between the range of values
taken by S in the system, in a manner independent on
the initial separation δx. Since there is no longer differ-
ence in the statistical properties of

∫ ts
0 dse−b(t−s)S[ri(s)]

for i = 1, 2, the average value of the difference of both
quantities, which is the contribution to (6) from the inter-
val (0, ts) will vanish.

To further analyze the behavior of the nonvanish-
ing contribution, from (ts, t), we introduce a third tra-
jectory r(s) satisfying again the Langevin equation (5)
with noise η (independent of η1 and η2) and endpoint
r(t) = x, and consider the time-dependent differences
δri(s) ≡ ri(s) − r(s), for i = 1, 2 (for 0 < s < t). They
satisfy the stochastic equations:

d
ds
δri(s) = v(ri(s), s)− v(r(s), s) + 2

√
νξi(s) . (8)

The final values are δr1(t) = δx/2 and δr2(t) = −δx/2,
and the new stochastic processes ξi(s) ≡ (ηi(s) −
η(s))/

√
2 turn out also to be white noise terms with

zero average and correlation matrix 〈ξi(s)ξj(s′)〉 =
δijIδ(s− s′).

As far as the differences δr remain small, the difference
in velocity fields in (8) may be linearized so that

d
ds
δri(s) = J(r(s)) · δri(s) + 2

√
νξi(s) . (9)

J is the Jacobian matrix of the velocity field v. Equa-
tion (9) can be formally integrated in terms of the funda-
mental matrix M(s, t), s ≤ t, which is the solution of

d
ds

M(s, t) = J(r(s)) ·M(s, t) (10)

with final condition M(t, t) = I. The result is:

ri(s) = r(s) + δri(s) = r(s)±M(s, t) · δx
2

+ Gi(s, t) .

(11)

The positive sign applies to i = 1, the negative to i = 2,
and

Gi(s, t) ≡ 2
√
ν

∫ s

t

ds′M(s, s′) · ξi(s′) . (12)

Gi is independent of δx. If the flow v(x, t) is chaotic, the
matrix M will in general produce exponential growth of
the second term in (11) and of the variance of Gi. Thus the
linearization leading to (9) will only be justified for |s− t|
small enough. This may be used to define ts as the smallest
value of s for which linearization is still valid. From the
assumed smallness of δx, and if ts < s, the second term
in the r.h.s. of (11) will be small, so that one can write

S[ri(s)] ≈ S[r(s) + Gi(s, t)]±∇S [r(s) + Gi(s, t)]

·M(s, t) · δx
2

+O(δx2) (13)

where again the two signs refer to the two values of i. We
are now in conditions to estimate the contribution to (6)
arising from (ts, t):〈∫ t

ts

dse−b(t−s)δS[r1(s), r2(s)]
〉
η1,η2

≈〈∫ t

ts

dse−b(t−s)S[r(s) + G1(s, t)]
〉
η1

−
〈∫ t

ts

dse−b(t−s)S[r(s) + G2(s, t)]
〉
η2

+
〈∫ t

ts

dse−b(t−s)∇S[r(s) + G1(s, t)] ·M(s, t) · δx
2

〉
η1

+
〈∫ t

ts

dse−b(t−s)∇S[r(s) + G2(s, t)] ·M(s, t) · δx
2

〉
η2

.

(14)

Since η1 and η2 have exactly the same statistical prop-
erties, the first two averages in the r.h.s. are identical,
and cancel out. The next two averages are also identical
and add up, so that (6), which only receives contributions
from (ts, t), can be written

δφ(x, t; δx) =〈∫ t

ts

dse−b(t−s)∇S[r(s) + G1(s, t)] ·M(s, t) · δx
〉
η1

·

(15)

The matrix M(s, t) contains the quantitative details on
the exponential separation of trajectories. In the deter-
ministic dynamics, for which δr(s) ≡ M(s, t) · δx, the
time scale of exponential separation is given by the largest
Lyapunov exponent λ, so that δx(s) becomes aligned with
the unit vector along the local unstable direction c[r(s)]
in a time of order λ−1, so that

δr(s) ≈ c[r(s)]e−λ(s−t)c†(x) · δx (16)
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if |s− t| > λ−1. c†(x) is the unit vector dual to c(x). Both
vectors are time dependent for time-dependent flows, but
we do not indicate such dependence for notational sim-
plicity. In this backward dynamics, the relevant Lyapunov
exponent is the most negative one. But in two dimen-
sional incompressible flow, it is equal in absolute value to
the largest positive one in the forward dynamics. In (16)
we take λ > 0 and the sign is explicitly written. Anal-
ogously, the local expanding direction in the backwards
dynamics is the contracting one in the forward dynamics.
Expression (16) will be introduced in (15). It should be
said however that the integral in (15) contains contribu-
tions also for |t − s| < λ−1. The slow convergence of the
Lyapunov exponent to its asymptotic value [18] may in-
troduce corrections, specially if b is large. In accordance
with our aim of neglecting any intermittency corrections,
we approximate the action of M by (16) in all the range
of integration.

We now use the mean value theorem to take out of
the integral the temporal average of ∇S · c(r(s)), which
we call ∆S. We introduce in (15) the change of variables
u = eλ(t−s)and write ts = t − τ (τ > 0). On physical
grounds τ →∞ if δx and ν → 0, and it is large but finite
for small δx and ν. Taking the limit t→∞ and regarding
that, in the large time limit, the statistical properties of
the concentration field are steady:

δφ(x,∞; δx) ≈ c(x)† · δx
〈
∆S

λ

∫ eλτ

1

duu−
b
λ

〉
η1

. (17)

Since ∆S is independent of δx, the scaling with this last
quantity is determined by

δφ(x,∞; δx) = Ac(x)† · δx
(〈

eτ(λ−b)
〉
τ
− 1
)

(18)

The only stochastic quantity in (18) is τ = t − ts, so
that the problem has been reduced to the calculation of
the statistics of this quantity. In terms of the characteris-
tic function of τ , defined as W (z) ≡ 〈exp (−zτ)〉τ , equa-
tion (18) reads

δφ(x,∞; δx) = B [W (b− λ)− 1] δx (19)

where B = A cos(α), with α the angle of δx with the lo-
cal expanding direction, and δx = |δx|. Since ts can be
estimated from (11) as |δr1,2(ts)| ≈ L, the calculation of
the statistics of τ is a classical first passage-time problem,
in which one looks for the time it takes a stochastic pro-
cess to reach a given level. There is a vast literature on
such problem for stochastic processes of the form (11) in
which M is a constant matrix or a constant number [19].

In the same spirit as before, we use equation (16) to
approximate (11) by

δri(s) ≈ e−λ(s−t)c[r(s)]
(
±c(x)† · δx

2
+ 2
√
νF (s, t)

)
(20)

with

F (s, t) ≡
∫ s

t

ds′c[r(s′)] · ξi(s′)e−λ(t−s′) (21)

where we have used (16) inside the integral in (12).
If |t−s| � λ−1, F becomes a constant random number,

F∞. From its definition, it is a Gaussian random number,
of zero average and variance 〈(F∞)2〉 = 1/(2λ). Thus from
(20) we can write the equation defining τ : |δri(ts)| ≈ L,
with ts = t− τ :

L ≈ eλτ
∣∣∣∣∣c(x)† · δx

2
+

√
2ν
λ
g

∣∣∣∣∣ (22)

where g is a random Gaussian number of zero average and
unit variance, from which

τ =
1
λ

ln
2L∣∣∣γδx+ 2
√

2ν
λ g
∣∣∣ · (23)

We have introduced γ = cos(α). In the following we denote

Ld = 2
√

2ν
λ , which introduces, as will be be seen below,

the diffusive length scale. The statistics of τ may be thus
obtained from a change of variables from the Gaussian
statistics of g. The characteristic function W (z) can be
now written in terms of (23) and the Gaussian distribution
of g:

W (z) =
〈
e−zτ

〉
=

(2L)−z/λ√
2π

∫ ∞
−∞

dge−
g2

2 |γδx+ Ldg|
z
λ .

(24)

At this point we mention that expression (19) with W
given by (24) constitutes the main result of this work.

More explicit expressions can be obtained in the im-
portant cases. If Ld � δx, then W (z) ≈ (γδx/L)z/λ.
In this case, (19) scales as δxH , with H = min(1, b/λ),
in agreement with previous results [2,3]. On the con-
trary, for small scales, that is, if δx � Ld, then W (z) =
π−1/2(4ν/L2λ)z/λΓ ( z+λ2λ ), and H = 1, thus δφ is smooth

below a diffusive scale given by Ld ≡ 2
√

2ν
λ . Therefore,

we realise of the existence of a crossover length-scale, the
diffusive scale, given by Ld which separates a diffusion-
controled smooth behaviour of δφ from an advection-
controled with scaling exponent given by min(1, b/λ). This
last is non-smooth when b < λ.

We can obtain an approximate expression simpler
than (24) by realizing that the fluctuations in τ are much
smaller than the average value if δx and ν are small, so
that 〈e−zτ 〉 ≈ e−z〈τ〉, and then substitute the average
value 〈τ〉 by an estimation of it, τ , obtained for example
by the condition that the second moment of the trajectory
separation reaches the system size:

L2 =
〈
δri(τ)2

〉
≈ e2λτ

4

〈
(γδx+ Ldg)2

〉
=

e2λτ

4
(
γ2δx2 + L2

d

)
(25)
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from which

τ =
1
λ

ln
2L√

γ2δx2 + L2
d

(26)

which is an approximation to the mean first passage
time 〈τ〉 if δx and ν/λ are small. Thus

W (z) ≈
(√

γ2δx2 + L2
d

2L

) z
λ

(27)

and

δφ(x,∞; δx) ≈ C cos(α)
[(
γ2l2 + l2d

) b−λ
2λ − 2

b−λ
λ

]
l. (28)

We have introduced l ≡ δx/L and ld ≡ Ld/L, and C is a
constant equal to AL/2

b−λ
λ .

The first order structure function, S1, can be obtained
by averaging (28) over the different spatial points x. Here
we realise that the point spatial dependence of (28) is only
through the angle α between δx and the local expanding
direction. Assuming that these directions are isotropically
distributed, S1 is calculated as:

S1(l) = 〈|δφ(x,∞; δx)|〉

=
C

2π

∫ 2π

0

dα
∣∣∣∣cos(α)

[(
cos(α)2l2+l2d

) b−λ
2λ −2

b−λ
λ

]
l

∣∣∣∣ .
(29)

The integral can be performed and we obtain:

S1(l) =
2 C
π
l

((
l2 + l2d

) b−λ
2λ F

(
1
2
,
λ− b

2λ
,

3
2

;
l2

l2 + l2d

)

+ 2
b−λ
λ

)
, (30)

being F (a, b, c;x) the confluent hypergeometric func-
tion [20]. The important thing to be noted in (30) is
that S1(l) shows the same scaling behaviour as δφ, with

a crossover length-scale given by ld = 2
√

2ν
λ /L. That is,

S1(l) ∼ l for l � ld and S1(l) ∼ l bλ when l� ld and b < λ.
Remarkably, the diffusive scale, ld, is independent of the
decaying coefficient, b, and therefore its value is the same
to the one obtained for the passive scalar with infinite
lifetime, i.e., with b = 0.

Next section is devoted to check numerically some of
the above analytical results.

3 Numerical results

In this section we will check the two regimes found for the
scaling of the structure function, and also the expression
equation (30).

Numerically, we proceed by integrating backwards
in time equation (5) with initial conditions on a one-
dimensional transect of the scalar field. Many different

-2 0 2 4 6 8
ln(l/l

d
)

-7

-6

-5

-4

-3

-2

-1

0

ln
(S

1 
(l)

)

1.0

0.23

0.40

0.50

Fig. 1. This figure plots ln(S1(l)) against ln(l/ld). Always T =
1 and ν = 5 × 10−7. Here b = 1.2 for the dotted line, b = 0.9
for the dashed line, and b = 0.5 for the long-dashed line. The
straight line above each curve shows the scaling behaviour, and
the number over the line indicates its slope. The two regimes
are observed: a) smooth (slope 1 for ln(l/ld) < 0), b) scaling
behaviour with slope b/λ for ln(1) < ln(l/ld) � ln(L/Ld) =
ln(1/ld).

trajectories are obtained in this way for different realiza-
tions of the noise. Then we integrate equation (4) forward
in time for each one of these trajectories (φ0 = 0), and fi-
nally, we average over the different trajectories. With this
procedure we obtain the field φ(x, t), at a fixed time t large
enough, on a one-dimensional transect without having to
calculate the whole two-dimensional field. Obviously, this
allows us to reach a high resolution for the structure func-
tions which are then only calculated on a 1d transect. For
the flow, v = (vx, vy), we take a simple time-periodic ve-
locity field defined, in the unit square, L = 1, and with
periodic boundary conditions, by

vx(x, y, t) = −2U
T
Θ
(T

2
− t mod T

)
cos(2πy)

vy(x, y, t) = −2U
T
Θ
(
t mod T − T

2

)
cos(2πx) (31)

where Θ(x) is the Heavyside step function, and T is the
periodicity of the flow. In our simulations U = 1.0, which
produces a flow with a single connected chaotic region in
the advection dynamics. The value of the numerically ob-
tained Lyapunov exponent is λ ≈ 2.35/T . The source term
used is S(x, y) = 0.2 sin(2πx) sin(2πy). We perform our
calculations until a final typical time of tf ∼ 15T where
we realise that a final statistical stationary concentration
field is reached.

In Figure 1 we show (in logarithmic scale) the struc-
ture functions against the length-scale in units of the ld.
We plot the curves obtained for different values of the de-
caying coefficient b = 0.5, 0.9, 1.2, and for a fixed value of
the diffusivity ν = 5 × 10−7, and T = 1. For any of the
different plots we observe three different regimes. First,
for small scales and up to the diffusion length scale ld
(ln(l/ld) = 0) the slope of the curve is 1, showing that the
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Fig. 2. Plot of the adimensional structure function, S1, as a
function of l/ld ≡ δx/Ld. With solid line we plot the theo-
retical result (Eq. (30)), and with different symbols the dif-
ferent values obtained numerically. a) is for the fixed values
b/λ = 0.382 and ν/λ = 4.2×10−6. b) the same for b/λ = 0.639
and ν/λ = 2.1×10−5 . The symbols in the legends indicate the
values of b, λ and ν used to obtain the numerical data.

structure function is smooth in this length-scale interval.
Then, for scales larger than ld and up to typical scales
comparable to the system size L = 1, appears the other
scaling regime. A straight line with slope b

λ is observed
here. In the figure, we also plot the straight lines show-
ing this behaviour, and with the number above indicating
their slope.

Next, we proceed to check numerically the validity
of equation (30). First, we realize that, on dimensional
grounds, the adimensional ratio S1 ≡ S1(l)/S1(l = ld)
should be a function just of the adimensional parameters
l, ld, and b/λ. Expression (30) fully satisfies this require-
ment. This can be used to compare numerically-obtained
values of S1 as a function of l (or l/ld as in the plot) for a
variety of values of λ, b, and ν with the theoretical predic-
tion. This last function would be a single curve as long as
the combinations ld = 2

√
2ν/λ/L and b/λ do not change.

Figure 2 shows (for two different values of (ν/λ, b/λ)) that
the numerical data indeed scale as expected from the the-
ory, and that the data collapse into the analytic curves is
very good, confirming the accuracy of expression (30).

Finally, in Figure 3 we perform an analogous plot (in
logarithmic scale) to Figure 2a but for the power spectrum
(also normalised to the diffusion length scale) analytically
calculated by Corrsin (2), and the ones obtained numer-
ically for the same values of b, λ and ν. Just a visual in-
spection confirms our expectation that, due to the effect
of intermittency, it is more reliable to compare with nu-
merical or real data the approximations to the first order
structure function than the approximations to the power
spectrum. Also, it is worth to mention that to calculate
the power spectrum much more data are needed to obtain
a nice statistics than in the case of the first order structure
function.
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Fig. 3. Comparison of the power spectrum (solid line) ob-
tained by Corrsin (2) and numerical data as in Figure 2a.

4 Summary

To summarize, in this paper we have investigated the
role of diffusion in the scaling properties of the first or-
der structure function of a passive scalar chaotically ad-
vected. Based on the Feynman-Kac representation of the
advection-reaction-diffusion equation, we have obtained
an analytical expression for the shape of the first order
structure function for all scales smaller than the typical
system size, and observed the existence of a crossover be-
tween a smooth regime and a scaling regime with slope
depending on the rate of the decaying coefficient and the
maximum Lyapunov exponent of the flow. The length-
scale for the crossover is the typical dissipative length

scale, given by Ld = 2
√

2ν
λ , which is independent of the

decaying coefficient and, therefore, is the same as for the
passive scalar with infinite lifetime. Moreover, our results
confirm that the scaling exponent of S1 is not modified
by the molecular diffusion. We have shown that our ap-
proximation for the first order structure function is more
reliable than the one for the power spectrum obtained un-
der the same disregard of intermittency corrections. This
could be relevant when explaining or modeling numerical
or experimental data. We have also provided numerical
support to our analytical findings. These are in excellent
agreement. Our numerical algorithm uses the Feynman-
Kac representation, and allows for a very fine scale res-
olution, as we just need to calculate the scalar field in
one-dimensional sections of the whole surface. We believe
that this numerical algorithm can be very useful for other
kind of advection-reaction-diffusion problems.

We acknowledge Zoltán Neufeld for his contributions to an
early version of the Paper, and Angelo Vulpiani for suggesting
us the use of the Feynmann-Kac formula. C.L. acknowledges
financial support from the Spanish MECD. E.H-G acknowl-
edges support from MCyT (Spain) projects BFM2000-1108
(CONOCE) and REN2001-0802-C02-01/MAR (IMAGEN).
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